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So,	even	moving	from	a	low-pollution	area	into	one	of	the	cleaner	cities	
could	still	increase	your	risk	of	respiratory	diseases	like	emphysema.

WHO	calls	urban	pollution	levels	a	“public	health	emergency”		
• 91%	of	us	live	in	areas	where	air	pollution	exceeds	the	agency’s	guidelines.		
• 55%	of	the	world’s	population	lives	in	urban	areas,	rise	to	68%	by	2050	(UN).		
• If	urban	life	is	a	serious	concern	for	our	health,	then	it	is	only	going	to	become	a	
greater	issue	for	more	of	us	as	time	passes.		(BBC)

An	increase	of	about	3	ppbv	ground-
level	ozone	outside	your	home	over	
10	years	in	a	low	pollution	area	was	
equivalent	to	smoking	a	pack	of	
cigarettes	a	day	for	29	years.

Assessed	nearly	7,000	adults	living	in	six	
U.S.	cities.	Published	in	JAMA	(IF=51.3)
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(State	of	Global	Air,	2019)

Developing	countries	in	the	tropics	
Increased	emissions	&	stronger	OPE		

(e.g.,	Zhang	et	al.,	2016)	
→	increased	air	polluOon	exposure	risk

To	make	effec8ve	policy	guidelines,	
an	accurate	assessment	of	air	pollutant	exposure	
based	on	dense/accurate	measurements	is	needed
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• The	in-situ	observing	network	is	clearly	insufficient	for	global	health	impact	assessment	
especially	in	developing	countries	that	suffer	from	severe	air	pollu[on.	

• Satellite	measurements	have	provided	an	unparalleled	source	of	global	data	but	suffer	
from	limited	surface	sensi[vity	for	many	key	species.	

• These	limita[ons	can	be	mi[gated	by	new	state-of-the-art	chemical	data	assimila8on	
systems	that	op[mize	the	informa[on	available	in	these	datasets.	

For	improved	assessment	of	long-term	changes	in	global	air	pollution	exposure

The	regular	surface	ozone	monitoring	sites:	
Roughly	only	17%	of	the	global	popula9on!



Multi-constituent	chemical	data	assimilation

MLS	(O3,	HNO3)

OMI	
SCIAMACHY	
GOME-2	
TROPOMI	
(NO2)

MOPITT	
(CO)

TES	
(O3)	

AIRS/OMI	
(O3)

OMI	(SO2)
Miyazaki	et	al.,	2012,	2013,	
2014,	2015,	2017,	2019b

Assimilated	
measurements

→	NOx,	CO,	SO2	emissions	

→	35	species	concentra8ons	+	
Lightning	NOx	

EnKF	data	assimilaOon	to	integrate	a	suite	of	measurements	from	mulOple	satellite	sensors

OMI	(HCHO) →	VOCs	emissions	(under	development)



Tropospheric	chemistry	reanalysis	(TCR-2)	

OMI	
	NO2

SCIAMACHY	
NO2

GOME-2		
NO2

TES		
O3

MLS		
O3/HNO3

MOPITT		
CO
OMI	
	SO2

row	anomaly

row	anomaly

(1) understand	the	processes	controlling	the	atmospheric	environment	
(2) provide	ini[al/boundary	condi[ons	for	climate/chemical	simula[ons	
(3) evaluate	climate	models	and	bodom-up	emission	inventories	
(4) suggest	developments	of	models/observa[ons	(e.g.,	satellite	concepts)

Two-hourly,
1.1° resolution,

Emissions & 
concentrations

NO2 (QA4ECV) O3 (v6) CO (v7J) O3,HNO3 (v4.2)NO2 (QA4ECV)O3 (AIRS/OMI)
NO2 (QA4ECV)

SO2 (NASA PCA)

20102005 2018



Multi-constituent	constraints	on	NOx	emissions
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Miyazaki	et	al.,	2017



Multi-constituent	constraints	on	NOx	emissions
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Miyazaki	et	al.,	2017

up	to	70	%	differences	in	regional	total	emissions



Multi-constituent	constraints	on	NOx	emissions
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Linear	trends	for	2005-2014

Accurate	emission	es[mates	require	a	emission-concentra[on	
rela[onship	that	explicitly	accounts	for	complex	chemistry	and	non-NO2	

concentra[ons	afforded	by	advanced	DA	(improved	OH)

Miyazaki	et	al.,	2017

up	to	70	%	differences	in	regional	total	emissions



Multi-sensor	constraints	on	diurnal	NOx	emissions
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Figure 1. Schematic diagram of the correction scheme for the emission diurnal variation for a case with Etc=�0.3. The black dotted time

represents the a priori emission diurnal variability function (Et) for anthropogenic emissions. The black solid line represents the a posteriori

emission variation after applying the daily emission scaling factor (Et⇥Es). The blue line represents the correction factor for the emission

diurnal variability (Etc). The red line represents the a posteriori emission variation after applying the daily emission scaling factor and the

correction factor for the emission diurnal variability (Et⇥Es�Etc for 07:30–10:30, and Et⇥Es+Etc for 10:30–13:30).

39

GOME-2	NO2	

SCIAMACHY	NO2	

➡	07:30-10:30	
OMI	NO2	

➡	10:30-13:30

•A	correc[on	scheme	is	applied	to	modify	the	shape	of	the	diurnal	emission	
variability	using	mul[ple	NO2	measurements	obtained	at	different	overpass	[me.		

•Etc	is	mostly	nega8ve	->	A	larger	nega[ve	bias	in	simulated	NO2	in	the	morning.	
Larger	underes[ma[ons	in	emissions	(e.g.,	morning	traffic	rush)	and/or	larger	
model	errors	in	chemical	life[me.

OMI

SCIAMACHY
GOME-2

Miyazaki	et	al.,	2017



Global	NOx	emission	trends	(2005-2018)

China
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Miyazaki	et	al.,	in	prep

NOx emissions

2005 2007 2009 2011 2013 2015 2017
-30

-20

-10

0

10

20

30

di
ffe

re
nc

e 
fro

m
 2

00
5 

[%
]

Global	total	emissions:		
Almost	constant	during	2005-2018	(49.3±2.7TgN)



2005-2010

2010-2015

2015-2018

Global	NOx	emission	trends	(2005-2018)

strong	impacts	on	air	
quality	and	human	health	
in	developing	countries



Unexpected	slowdown	of	US	NOx	emission	reduction

Jiang	et	al.,	
PNAS,	2018

1. Off-road vehicles and area sources (industrial & residential) 
2. On-road diesel emissions not decreasing as expected  
3. On-road gasoline vehicles contributing fractionally less and maybe reaching diminishing returns

Fuel-based	NOx	bo^om	up	esOmates	show	some	fla^ening	in	the	trend.
Main contributions to fuel-based and NEI trend differences:



HAQAST:	US	background	ozone

2007

2008

2009

2012

2013

2014

2010 2015

2011 2016

750	hPa	mean	ozone	anomaly	in	April	due	to	Chinese	NOx	emission	changes	from	2006
demonstrate the importance of local/remote emissions on air pollution exposure assessment



 Dynamic weather Stagnant, Local impacts

Extreme pollution from China Blocking pattern

Phase 3
25-31 May

Phase 1
1-16 May

Phase 2
17-22 May

Phase 4
1-6 June

Reanalysis	ozone	at	700	hPa

KORUS-AQ	aircraft	campaign	(May	2016)

Miyazaki	et	al.,	2019a Dynamic changes in air pollution



KORUS-AQ	aircraft	campaign	(May	2016)

Source-receptor	analysis
from NOx emissions to O3 over Seoul at 900 hPa

NOx

CO

SO2

A posteriori Increments
Emission	es8mates

+75%–94%

+70%–140%

-	63%–83%

Miyazaki	et	al.,	2019a
Dynamic	changes	in	emission	influences

for effective ozone control strategy (+VOCs)



(All)

•OMI	+	GOME-2	NO2	→	Improved	the	lower	tropospheric	ozone	
•MLS	O3/HNO3	→	Addi[onal	important	correc[ons	throughout	the	troposphere.		
•Mul8-cons8tuent	(Reanalysis)	→	correct	the	en[re	tropospheric	ozone	profile	
• AIRS/OMI	ozone	(not	shown)→	further	improvements	for	any	met	condi[on.	

700	hPa400	hPa

Ozone	biases	to	DC-8	(ppb)	
(during	stagnant	condi[on)

Impact	of	individual	assimilated	measurements

(ppbv) DC-8	obs	
Model		

Reanalysis

Mean	ozone	profile

Observing	System	
Experiments	(OSEs)

Miyazaki	et	
al.,	2019a



Multi-model	data	assimilation	integration

Chemical	reanalyses	provide	useful	informa[on	on	
exposure	es[mates	and	its	adribu[ons.	Nevertheless,	
systema8c	model	errors	must	be	quan8fied	in	order	
to	assess	their	fidelity	for	exposure	studies.	

Surface	ozone	changes	[ppbv]	due	to	NOx	
emission	changes:	2010-2016	minus	2005-2009

Mul8-mOdel	Mul8-cOns8tuent	CHEMical	data	assimila8on	(MOMO-Chem)

GEOS-Chem

AGCM-CHASER

MIROC-Chem

MIROC-Chem-H

Aura

Mul8-cons8tuent		
satellite	data	

(NO2,	O3,	CO,	HNO3)

Mul8-model	
data	assimila8on	
(EnKF	+	4	CTMs)

Aqua Terra

Integrated	reanalyses	
Concentra[ons	&	Emissions

Mul8-model	
integra8on

Reanalysis	uncertainty	
Chemistry	&	Transport

up	to	+3ppb

Miyazaki	et	al.,	submided



Multi-model	data	assimilation	integration

Miyazaki	et	
al.,	submided

GEOS-Chem
AGCM-CHASER
MIROC-Chem
MIROC-Chem-H

OBS

Assimila[on
Model

Harnessing	the	current	observing	system	
provides	sufficient	constraints	to	greatly	

reduce	the	influences	of	model	errors	and	to	
provide	the	consistent	concentra[on	analysis	

for	O3,	NO2,	CO,	and	OH.	

Mul[-model		
mean/spread

Model:	1.8±2.7	
Assim:	3.3±1.6

Model:	4.1±8.6	
Assim:	-1.5±2.1

vs	ozonesonde
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Mul8-cons8tuent	assimila8on	greatly	
reduced	the	annual	mean	model	bias		
(by	40-80%	in	NH,	50-90%	in	TR,	45-95%	in	SH)	
and	the	mul8-model	spread	
(by	20–60%	in	NH	and	30–85%	in	SH)



Multi-model	data	assimilation	integration

Miyazaki	et	
al.,	submided
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•Commonly	suggests	poten[al	problems	in	the	bodom-up	emission	inventories		
• Possible	uncertainty	ranges	in	the	a	posteriori	emissions	due	to	model	errors:	13–
31%	for	industrialized	areas	and	4–21%	for	BB	areas		

→	Different	model	responses	to	emissions	among	the	systems

NOx	emissions	:	India



The	analysis	increments	were	
used	to	quan[fy	model	
sensi[vi[es	related	to	
chemistry	and	transport

Ozone response to NOx emissions
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Miyazaki	et	al.,	submided

• TR	>	NH	:	La[tudinal	shivs	in	NOx	emissions	would	increases	global	ozone.	
• The	observa[onally-constrained,	mul[-model	integrated	fields	provide	fundamentally	
different	fast	chemical	processes	than	those	in	the	individual	models.		

• This	would	provide	insights	into	ozone	produc[on	processes	to	inform	chemical	
predic[ons	through	rela[onships	such	as	emergent	constraints

Mul[-model		
mean/spread

Integrated		
reanalysis

Multi-model	data	assimilation	integration
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For	evaluation	of	chemistry	predictions

14

12

10

8

Fu
tu

re
 (2

09
0-

20
99

)

1413121110987
Present (2000-2009)

 CHASER

 CMAM

 EMAC47
 EMAC90

Reanalysis

CCMI	RefC2	
(r=0.81)

30N-65N,		
700	hPa

Updated	from	
Miyazaki	and	
Bowman,	2017

Seasonal	O3	amplitude	[ppbv]	from	CCMI	RefC2

• To	ensure	more	accurate	future	ozone/radia[ve	forcing	predic[ons	by	evalua[ng	future	
simula[ons	by	using	the	reanalysis	as	emergent	constraints.	

• The	similar	approach	could	be	applied	to	evaluate	model	responses	to	changing	emissions	
in	future	climate	predic[ons	using	the	ozone	response	quan[fied	in	MOMOR-Chem.
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For	evaluation	of	chemistry	predictions

14

12

10

8

Fu
tu

re
 (2

09
0-

20
99

)

1413121110987
Present (2000-2009)

 CHASER

 CMAM

 EMAC47
 EMAC90

Reanalysis

CCMI	RefC2	
(r=0.81)

30N-65N,		
700	hPa

11.7	→	7.9	(-30%)

Updated	from	
Miyazaki	and	
Bowman,	2017
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• To	ensure	more	accurate	future	ozone/radia[ve	forcing	predic[ons	by	evalua[ng	future	
simula[ons	by	using	the	reanalysis	as	emergent	constraints.	

• The	similar	approach	could	be	applied	to	evaluate	model	responses	to	changing	emissions	
in	future	climate	predic[ons	using	the	ozone	response	quan[fied	in	MOMOR-Chem.



OH NH/SH ratio
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For	evaluation	of	chemistry	predictions

1.29±0.03
1.18±0.03

Model

Assim

MOMO-Chem mean±stdev

→	evalua[on	of	various	aspects	of	
the	tropospheric	chemistry	system

Observational estimate = 0.97 
(Patra et al., 2014)

Oxida9on	capacity	response	
to	changing	emissions



Tropospheric	chemistry	reanalysis	(TCR-2)	

• Chemical	reanalysis	products:	TCR-1	(Miyazaki	et	al.,	2015),	TCR-2	(Miyazaki,	et	al.,	in	prep)	
• Air	quality	studies:	KOURUS-AQ	(Miyazaki	et	al.,	2019a;	Thompson	et	al.,	2019),	Remote	oceans	
(Kanaya	et	al.,	2019),	the	Middle	East	ozone	(Jiang	et	al.,	2016),	SE	Asia	ozone	(Ogino	et	al.,	to	be	
submided),	Machine	learning	(He	et	al.,	2019)		

• Satellite	data	evalua8ons:	TES	(Cady-Pereira	et	al.,	2017),	AIRS/OMI	(Fu	et	al.,	2018),	IASI-GOME-2	
(Cuesta	et	al,	2018),	TES/OMI	(in	prep),	QA4ECV	OMI	(Boersma	et	al.,	2018)		

• Chemistry-climate	model	evalua8ons:	ACCMIP	(Miyazaki	and	Bowman,	2017),	CCMI	(Kuai	et	al.,	2019)			
• Emission	inter-comparisons:	NOx	(Ding	et	al.,	2017;	Miyazaki	et	al.,	2014;	2017;	2019a,	Itahashi	et	al.,	
submided;	Elguindi	et	al.,	in	prep),	NOx/CO	(Tang	et	al.,	2019),	Lightning	NOx	(Miyazaki	et	al.,	2014)	

• Reanalysis	comparisons:	CAMS	ozone	(Huijnen	et	al.,	submided),	Mul[-model	(Miyazaki	et	al.,	
2019b),	Mul[-resolu[on	(Sekiya	et	al.,	to	be	submided)	

• Other	ac8vi8es:	TROPOMI	mul[-cons[tuent,	AQ-GHG	synergies,	VOCs,	Higher	resolu[on	(GCHP)

The	reanalysis	products	will	be	distributed	through	the	JPL	TES	website	and	GES	DISC!		
More	than	20	variables,	two-hourly,	14	years,	1.1	degree,	27	levels,	global



Conclusions

• A	14-year	chemistry	reanalysis	has	been	conducted	using	mul[-cons[tuent	mul[-
sensor	satellite	data	assimila[on,	in	order	to	provide	comprehensive	informa[on	
on	atmospheric	composi[on	and	emissions	variability.	

• The	reanalysis	data,	combined	with	suborbital	and	ground-based	measurements,	
has	been	used	to	improve	our	understanding	of	atmospheric	composi[on	and	
their	impacts	on	air	quality,	human	health,	ecosystem,	and	climate.	

• Diagnos[c	informa[on	readily	available	from	MOMO-Chem	has	the	poten[al	to	
improve	chemical	predic[ons	through	rela[onships	such	as	emergent	constraints.

Relevant	ongoing	work	at	JPL	
• Evalua[ons	of	new	satellite	data	(AIRS/OMI,	TES/OMI,	GOME-2/IASI)	
• AQ-GHG	synergy:	mul[-species	constraints	and	joint	emission	es[ma[on	(OCO-2,3)	
• Emergent	constraints	on	the	chemistry-climate	system	and	carbon	cycle	(CMS-Flux)		
• Health	impact	assessment	(NASA	HAQAST)
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Thank you!

You made
chemical reanalyses



�25

backup	slides



Attribution	of	changes	in	oxidizing	capacity	

For	improved	pollu8on	exposure	assessment		
• The	limited	spa[al	coverage	of	this	network	
is	clearly	insufficient	for	global	health	
impact	assessment	especially	in	developing	
countries	that	suffer	from	severe

Tropo.	OH	changes	:	
2010-2016	minus	2005-2009

Reanalysis (w/o TES) due to NOx emission changes

due to meteorology



Carbon/Air	quality	co-evolutions

2005- 
2010

2011- 
2017

Q1:	Business	as	usual	(BAU)	
Q3:	AQ-only	(CO2	lock-in?)	
Q4:	AQ/Carbon	(renewables)		
Q2:	Carbon-only

CO2	trend

NOx	trend

Q1Q2

Q4 Q3



Global	SO2	emission	trends	(2005-2018)

-70	%

>+40	%

-45	%

+80	%

Global	total	:	39.5	TgS	(2005)	to	32.0	TgS	(2018)

→	Aerosols,	climate,	human	healthMiyazaki	et	al.,	in	prep



For	improved	evaluation	of	emission	changes

TROPOMI

OMI

Model-Obs Assimila8on-Obs

Global	0.5°	resolu[on	assimila[ons	of	TROPOMI	NO2	(May	2018)



Ozone	reanalysis	inter-comparisons

Products Model DA Period

CAMS-iRA IFS	(CB05)	
T159	(1.1) 4D-VAR 2003-2018

CAMS-RA IFS(CB05)+Aerosol		
T255	(0.7) 4D-VAR 2003-present

TCR-1 CHASER-EnKF	
	T42	(2.8) EnKF 2005-2016

TCR-2 MIROC-Chem-EnKF	
T106	(1.1) EnKF 2005-2018

CAMS-iRA 4.9

CAMS-RA 3.2

TCR-1 5.0

TCR-2 3.4

Huijnen	et	al.,	submided

RMSE (ppbv)

TCR-2CAMS



Ozone	reanalysis	inter-comparions

!31

Over	the	tropical	lands,	the	representa[on	of	biomass	burning	emissions,	biogenic	
emissions,	their	impacts	on	ozone	produc[on,	as	well	as	convec[ve	transport	could	be	
largely	different	among	the	systems.

TCR-2	
minus	
CAMS

Huijnen	et	al.,	submided

5-15 ppb



Surface	ozone	reanalysis	over	remote	oceans

!32

• TCR-2	reproduced	well	(R=0.78)	photochemical	buildup	of	ozone	and	enabled	
interpreta[on	of	observa[ons	regarding	pollu[on	sources.		

• Tropical	western	Pacific	ozone	remains	a	challenge	but	can	be	improved	by	the	
incorpora[on	of	halogen	chemistry	and	and	addi[onal	observa[ons.	

• The	ability	to	reproduce	remote	ocean	ozone	observa[ons	demonstrates	that	chemical	
reanalyses	can	be	used	to	help	es[mate	the	global	mean	OH. Kanaya	et	al.,	2019


